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1. Abstract

In biomedical applications, frequently only a limited number of samples are available for 

the development and testing of classification rules. Understanding the behavior of the 

error estimators in this setting is therefore highly desirable. In an extensive  study using 

simulated as well as real life data we investigate the properties of commonly used error 

estimators  in  terms of  their  bias  and variance,  and have found that  in  these small  

sample  size  situations,  the  influence  of  variance  on  the  error  estimates  can  be 

significant, and can dominate the bias. Consequently, our results strongly suggest that 

bootstrap resampling and/or k-fold cross-validation-based estimators, especially when 

computed over  multiple  data  splits,  should be preferred in  these small  sample  size 

scenarios,  because of  their  reduced variance compared to  the more  routinely  used 

crossvalidation  approaches.   While  linear  partial  least  squares was  used  as  the 

classifier/regressor, the general conclusions arising from this study are not qualitatively 

affected for other classifiers, linear or nonlinear. 

Keywords: error rate estimation, crossvalidation, bootstrap resampling, small sample 

size
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2. Introduction

Classification deals with the problem of grouping observations into a number of known 

classes.  Developing reliable classifiers for the class prediction of future observations 

requires some means to assess the quality of the developed classification rules.  A 

common measure of model quality is the probability of misclassifying new observations 

that are not included in the development of the classification model.  One calculates this 

generalization error as the proportion of misclassifications in a test set.  One refers to 

the samples used to develop the classification model as the training set. In biomedical 

applications, the number of available samples that are well characterized and therefore 

suitable for use in classifier training and testing is often limited.  When developing a  

classifier  based  on  a  sparse  dataset,  a  number  of  caveats  apply.  The  crux  of  the 

problem is that there are too few samples to adequately train and test the classifier.  

Too few training samples compromise the quality of the classification model and cast 

doubt on the reliability of the classification rules.  Too few test samples provide only a 

crude measure of model quality i.e., gross approximations to the generalization error of  

the  classification  model.     Since  one  draws  inference  from  the  estimated  error, 

overlooking the properties of the error estimator can lead to false conclusions regarding 

the prediction capability of the classification model.  

This manuscript reviews common strategies for estimating the classification error when 

only a small number of samples are available. The properties of these estimators, in 

particular their bias and variance, are investigated. Bootstrap re-sampling and/or k-fold 
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crossvalidation-based estimators are recommended because of their reduced variance 

compared to the more routinely used crossvalidation approaches. 

2.1 Error Estimation Methods

The characteristics of  different  error  estimation methods have been investigated for 

different  sample  sizes  and classifiers  [1-12].   Estimators  of  the  generalization  error 

should be both precise and accurate.  Inaccurate error estimators have a systematic 

deviation  from  the  true  error;  they  are  biased estimators.  This  bias  can  only  be 

determined by comparison with a reference method that provides the true generalization 

error.  Imprecise estimators exhibit high variance.  The variance of an estimator can be 

approximately determined by repeatedly assessing the estimator on models trained and 

tested on different partitions of the data.  Thus, estimating a model's generalization error 

rate, both bias and variance contribute to the total uncertainty. However, usually only a  

single error estimate is employed as the quality parameter of the classification model. 

This  practice  provides  no  information  on  the  variance  of  the  error  estimation,  thus 

impairing the inferences available from such a measure of model quality.  The problem 

is particularly acute when sample sizes are small.

2.2 Independent Test Set or Hold-Out Method.

When sample sizes are large, one can divide the data into independent training and test 

sets. The classification error predicted for the test set, using the independent training 

set  to  build  the  classification  model,  provides  an  unbiased  estimator  of  the 

generalization error of the model.  However, the variance of the estimator can be quite  

large with small test set sample sizes.  Perhaps more importantly, the hold-out method 
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requires that precious samples be further partitioned between training and testing the 

classifier  model.   Depriving  the  training  and  validating  sequences  of  classifier 

development from samples can seriously compromise both the quality of the model and 

the reliability of the error estimation.  The inefficient use of data inherent in the hold-out 

method is a serious liability for small sample sizes.

2.3 Resubstitution

The most obvious way to use all data for model training and additionally estimating the  

error is to predict the class memberships for the same data that was used for model  

building.  This  resubstitution  estimate  of  the  model's  error  actually  measures  the 

classifier’s ability to adapt to the training data. Using this estimate leads to an optimistic 

bias.  In many cases, the resubstitution error is extremely optimistically biased and is of 

limited  value  in  judging  the  quality  of  the  classification  model,  i.e.  its  prediction 

capability.  

2.4 Resampling Methods

To avoid optimistic bias,  independent test and training sets should be used.  Thus, in 

the small-sample case, one faces the conflicting goals of using as many samples as 

possible to build the classification model (training) and yet retaining as many samples 

as possible to estimate the model’s error (testing).   Resampling methods attempt to 

resolve this  conflict  by using all  the data for  both training and testing;  this  is  done 

iteratively, ensuring that at each iteration the training and testing data are independent.  

Resampling partitions the original data into subsets, each of these being used to build a 
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submodel.  Samples excluded from the subset used to build the submodel are available 

as  an  independent  test  set,  to  be  used  to  estimate  the  generalization  error  of  the 

submodel.  Averaging over the errors for the submodels provides an estimate of the 

generalization error for the model built using the full dataset.  

In  the  following  one  tacitly  assumes  that  the  samples  used  are  random,  unbiased 

samples from the parent population. In general, this cannot be guaranteed for real-life  

data. Of course, no error estimator can compensate for biased sampling. This caveat 

should always be kept in mind. There are two assumptions underpinning resampling-

based error  estimation 1)  The submodel  obtained from resampling is  similar  to  the 

model  that  would  be  created if  the  entire  dataset  were  used,  and  2)  The  different 

submodels  obtained  through  resampling  are  similar.   However,  these  assumptions 

begin to break down as the sample size decreases.  Since the average error for models 

based  on  smaller  sample  sizes  is  generally  higher,  there  is  an  inherent  source  of 

pessimistic bias in this approach.  The variability between the training samples used to 

build the various submodels leads to errors conditional on the particular training set 

used  to  build  the  submodel.   For  small  sample  sizes,  this  can  be  an  important 

contributor to the variance in the estimated error.   The various resampling methods 

suffer from different degrees of bias and variance in the estimation of the error.

2.4.1 k-fold Crossvalidation (k-fold CV)

This crossvalidation (CV) strategy ensures that every sample is used for testing and 

these have the same weight in the error estimation. Data are randomly split into k sets  
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of  nearly  equal  size  and  k  different  submodels  are  built  by  iteratively  using  k-1  of  

datasets in each submodel.  For each submodel the subset of the data excluded from 

building the model is used  as the test set for that submodel.  In this way all samples are 

used in both model training and testing over the sequence of k submodels and the error  

estimated over the k submodels (k-fold CV error estimate) provides an estimate of the 

generalization error of the model built on the entire data set.    The test and training 

sample sizes depend on k; common choices are k = 5 or 10.  In practice, using a single  

random split of the data is common, however multiple splits can be done to help control  

the variance of the estimator.  

2.4.2 Leave-One-Out Crossvalidation (LOO CV)

Leave-one-out (LOO) is the special case of the k-fold CV with k equaling the sample 

size N.  Each sample is left out one at a time; N submodels are calculated and tested on 

the excluded samples.  LOO error estimation is known to have a small pessimistic bias 

but may suffer from high variance.  However, for small sample sizes, the bias can also  

be very large.

2.4.3 Out-Of-Bootstrap Error Estimation [4]

Crossvalidation methods form their training data by drawing samples from the dataset 

without replacement, i.e., once a sample is selected from the dataset, it is no longer  

available  for  future  selections.  Bootstrap  methods  use  random  selection  with 

replacement; hence, samples can occur more than once in a bootstrap training set.  The 

replacement provides the desired training sample size.  Samples not selected or "out-of-
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bootstrap" are independent of that particular bootstrap set and can serve as test data for 

a submodel built on the bootstrap (training) set.

By drawing (with replacement) bootstrap sets of the same size as the source dataset, 

on average approximately 37% of the samples are left out of the bootstrap set and can 

be  used  to  estimate  the  error.   A  common  implementation  averages  the  errors 

estimated for 100 - 200 submodels based on different bootstrap sets of the same size 

as the original dataset.  Hence, small variance is expected due to averaging over the 

large number of submodels, but the estimate should be biased as the submodels on 

average are based on only 63.2% of the samples in the original dataset.

One approach to correct for this bias is to use .632 bootstrap estimation [4,5], which is a 

weighted average of the out-of-bootstrap (63.2%) and of the resubstitution  (36.8%) 

estimates.  
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3. Experimental

3.1 Classification

Partial least squares discriminant analysis (PLS-DA) [13, 14] was used to carry out the 

classifications.   PLS-DA is  a  partial  least  squares  regression  of  a  set  Y  of  binary 

response  variables  describing  the  categories  or  class  membership  on  a  set  X  of 

predictor  variables.   PLS  models  attempt  to  find  orthogonal  linear  combinations  of 

predictor  variables  (latent  variables  or  factors)  that  account  for  the  variability  in  the 

predictor  space,  while  simultaneously  being  highly  correlated  with  the  response 

variable.   This process consists of two parts: estimating a smaller set of orthogonal  

variables that are able to describe the regression problem, and building a regression 

model  using  these new variables.   Retaining  only  a  few latent  variables  effectively 

reduces the dimensionality of the data used to build the regression/classification model. 

This  technique is  particularly  suited to  deal  with  situations for  which the number of 

predictor variables exceeds the number of samples and where collinearity exists among 

the  predictor  variables.   These  two  situations  arise  when  high-dimensional 

spectroscopic  data  are  used  to  predict  or  classify  a  small  number  of  samples  or 

observations.

PLS  models  were  built  using  the  SIMPLS  algorithm  [15]  (PLS  Toolbox©  1997-98 

Eigenvector Research, Inc., Manson, WA, USA) using the Matlab scripting language 

(Matlab Version 6, Mathworks, Natick, MA, USA).  To perform discrimination, the two 

classes were assigned dummy regression labels of –N/n1 and N/n2 and a threshold of 
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zero was used (N = n1  + n2  is the total number of samples, n1 = number of samples in 

class 1, n2 = number of samples in class 2).  Hence, samples with regression values 

falling below the threshold are assigned to be in class 1, whereas those samples with 

regression values above the threshold belong to class 2.

3.2 Datasets

Large sample sizes are required to provide a reliable estimate of the true generalization 

error of the classification model.  The error estimator must be accurate and robust in 

order to assess its performance realistically when the sample size is small.  The ratio of  

the number samples or observations to the number of features or predictor variables 

(sample  to  feature  ratio,  SFR)  dictates  the  effective  sample  size.   Common 

recommendations are that the SFR should be between 5 to 10 (e.g. [16-18]). 

3.2.1 UCI Pima Diabetes Dataset

This dataset is available from the UCI repository [19]. The samples have 8 features or 

predictor variables and the dataset consists of 268 diabetes and 500 control  cases. 

Classification  models  based  on  one  to  eight  latent  variables  with  randomly  drawn 

training and test sets containing 5, 10, 25, and 50 samples per class were investigated. 

With respect to dimensionality, these datasets span the range from small to medium 

sample sizes.   From the remaining  data,  independent  sets  of  samples  were  drawn 

randomly, and used to provide large-sample estimates of the generalization error of the 

classification model.  Stratified random draws of the data were used to ensure that each 

class had a balanced representation in the small sample training and test sets as well  

as the large sample reserved to provide a reliable estimate of the generalization error
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3.2.2 Simulated data

Inherent characteristics of spectroscopic data are the high dimensionality of the feature 

space  and  the  presence  of  correlation  between  adjacent  features.   Under  these 

conditions,  the number of samples required to satisfy the recommendations regarding 

sample size become enormous and is rarely attainable in practice.  Using two infrared 

spectra in the range of 1000 to 1800 cm -1 to represent true class means and a common 

covariance matrix proportional to the identity matrix, normally distributed data with an 

intrinsic class overlap or Bayes error rate of 10.5% were generated through simulation. 

Each  base  spectrum consists  of  208  data  points,  resulting  in  a  problem with  high 

dimensionality.  The diagonal covariance matrix provides a simple covariance structure 

consistent with other simulation studies appearing in the pattern recognition literature 

[20,21].  Datasets of size  5, 10, 25, 50 and 100 samples per class were generated, 

resulting  in  small  sample  sizes  compared  to  the  dimensionality.   Large-sample 

estimators of the generalization error were based on an additional independent test set  

of  100,000 samples  (50,000  samples  per  class)  these large test  sets  provided  the 

reference error for a given classification model.  Models from one to six latent variables 

were examined.

3.3 Error estimations

Assuming that the large-sample estimate of the generalized error represents the true 

error of the classification model, the quality (bias and variance) of the various small-

sample error estimators can be judged by comparing them to the large-sample error  

estimate.   Small  sample  subsets  were  drawn randomly  from the  original  data  in  a 
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manner that ensured equal class representation in each of the subsets.  Data not used  

in the subset to build the classification model provided an independent large-sample 

estimator of the generalization error of the classification model.  A measure of the mean 

and variance of the small-sample error estimators was obtained by forming 1000 small-

sample partitions of the data and calculating the mean and variance of the small-sample 

error rate over the partitions.    Figure 1 illustrates the error estimation strategy.

For  each  small-sample  partition,  the  resubstitution,  LOO,  5-fold  CV,  and  out-of-

bootstrap errors were calculated.  Bootstrap-based error estimations used 200 stratified 

bootstrap draws.  In this implementation, the stratified bootstrap draws an equal number  

of samples from each class to ensure that balanced data sets were used to develop 

each bootstrap model.  The .632 bootstrap estimation was computed as the sum of 

63.2%  of  the  out-of-bootstrap  error  and  36.8%  of  the  resubstitution  error  of  the 

bootstrap  models.  The  5-fold  CV  implementation  used  stratified  random  subsets, 

without repetition to  ensure that an equal  number of samples from each of the two 

classes were used to develop the classification models.  The performance of the hold-

out method was assessed somewhat differently: each small-sample partition was split  

further into stratified parts comprising 60% and 40% of the samples for building the 

model and estimating the hold-out error, respectively.  

The  difference  between  the  large-sample  reference  error  estimator  and  the  small-

sample error estimators is reported as a measure of the quality of the latter.  Both the 

bias and the variance are investigated in this study.  The bias estimate is the mean  
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difference between the  small-  and the  large-sample  error  estimators  over  the  1000 

partitions.  The variance is approximated by the variance of the difference between the 

large- and small-sample error estimators.

4. Results and Discussion

Figure 2 displays the mean and standard deviation (SD) of the reference error as a 

function  of  training  set  size  for  both  the  simulated  and  Diabetes  data.  A  large 

independent subset of the data is reserved as a test set to provide a reference error 

estimation of the classification models.  As expected, the reference error decreases as 

the size of the training set used to build the models increases.  Similarly, the variance in  

the reference error estimation also decreases, mainly because of model improvement 

when the training set increases.  The variability observed in the reference error derives  

from the finite sample size of both the test and training sets.  However, given the large 

size  of  the  subset  of  data  used in  the  reference error  estimation,  we  assume that  

variance arising from the finite test set is negligible in the reference error estimation 

compared to the variance arising from the finite training set.  Although this should be a  

reasonable assumption for the simulated data, for which the test set sizes are extremely 

large (50,000 per class), the higher variability observed in the reference error for the 

Diabetes data suggests the presence of some residual variability due to the finite test 

set size (200 samples per class used in the large sample reference error estimate). 

Since the variance introduced by the finite test set cannot exceed the variance observed 

over the 1000 reference error estimations, we can set an upper limit on the magnitude 
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of the variance introduced by the finite test set size.  For the Diabetes data, this effect  

was  always  less  than  1/5  of  the  standard  deviation  in  the  difference  between  the 

reference error and the small-sample error estimators.  

Examining the difference between the small-sample error estimators and the reference 

or large test sample error estimator provides some insight into the sources of bias and 

variance of the various small-sample error estimators.  Taking the difference between 

small-sample error and reference error estimations effectively cancels out the variability  

arising from the small-sample training set used to build the models.  We can attribute 

the difference between the small-sample and reference error estimations largely to the 

small-sample estimator.  Figures 3a and 3b display the mean and SD of the difference 

between the reference error and small-sample error estimations as a function of training 

set size.  The mean value of the difference gives the bias of the small-sample estimator, 

whereas the standard deviation approximates its variance.

4.1 Resubstitution error estimation

The resubstitution error estimates are quite distinct from the other estimators and show 

an extremely optimistic bias, especially for the simulated spectral data.  For the small-

sample cases, the resubstitution error is zero for the simulated data (see Figure 5).  The 

low variance of the resubstitution estimator for the simulated data can also be explained 

by the low, but extremely optimistic error estimation.  For the Diabetes data, bias is still  

optimistic but less pronounced.   The variance of the resubstitution estimator for the 

Diabetes data is comparable to that of other estimators.  The resubstitution estimator 

underestimates the generalization error to such an extent that disparate models can 
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often  have the  same resubstitution  error.   These results  suggest  that  in  the  small-

sample setting the resubstitution error rate estimator should not be used for choosing 

between  different  classification  models  (model  selection  or  determining  model 

complexity) or as a reliable indicator of the model’s generalization error. 

4.2 LOO CV error estimation

Figures 3 and 6 show the difference between the reference error and the LOO error, 

and the LOO error as a function of sample size, respectively.  For the smallest sample 

sizes investigated using the simulated dataset, the mean LOO error estimate was 58%, 

which  is  larger  than  the  error  expected  when  simply  guessing  class  membership. 

Figure 3 indicates that for small sample sizes, LOO CV suffers from both large variance 

and a large pessimistic bias.  While the large variance of LOO estimation is known, 

LOO is usually reported as being a reasonably unbiased estimator.  A possible reason 

for  this  unexpected high bias is  the fact  that  the submodels are  built  with  unequal 

sample  sizes  for  the  2  classes  and  the  test  sample  always  belongs  to  the 

underrepresented class. This inherent lack of stratification in the LOO strategy leads to 

the high bias encountered for small sample sizes.  Overall, the combined high variance 

and large pessimistic bias makes LOO error estimators of little value for small-sample 

size problems.  In addition, one cannot reduce the variance of this estimation method. 

4.2 k-fold CV error estimation

The k-fold estimators are expected to make up for some of the deficiencies of the LOO 

estimator.  While the 5-fold CV estimator was relatively unbiased, the variance turned 

out to be comparable to that of the LOO estimator.   However,  unlike with the LOO 

estimator, further resampling can be carried out to help reduce the variance of the k-fold 
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estimator.  Using more than one random split of the data and averaging the k-fold error 

estimations over these different random splits, the variance of the estimator should be 

reduced.  Using 40 random splits of the data (a total of 200 submodels) resulted in a 

somewhat reduced variance for both the simulated and Diabetes data.  Such an iterated 

k-fold CV procedure is recommended for datasets with fewer than 100 samples, instead 

of the conventional k-fold CV that uses a single random split..  While the iterated k-fold 

CV procedure helped reduce the variance of the error estimation, its observed variance 

was higher than that of the out-of-bootstrap estimator.  The 5-fold CV error estimate 

showed remarkably low bias, particularly for the smaller training sets (for which the LOO 

method failed).  For large sample sizes with the Diabetes data, only the .632 estimator  

showed  smaller  bias,  and  with  the  synthetic  data  LOO  performed  slightly  better. 

Generally the 5-fold CV error estimator was the least biased estimation method.

4.3 Bootstrap-based error estimators 

The  out-of-bootstrap  estimate  generally  showed  more  pessimistic  bias  than  the 

crossvalidation estimates, except for the described failures of the LOO CV.  The bias of 

the  out-of-bootstrap  estimator  is  partly  related  to  the  slight  imbalance  between 

submodels, suggesting that the bias could be reduced if both the training and test sets  

were  stratified.  Compared  to  the  crossvalidation  methods,  the  variance  was  lower, 

particularly with small sample sizes.  This estimator showed the lowest variance among 

the pessimistically biased methods.  Only the .632 bootstrap estimator showed lower 

variance, however as noted below, the .632 bootstrap estimator should be used with 
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caution.  The low variance properties of the out-of-bootstrap error estimator make it 

attractive for small-sample error estimation.

The .632 bootstrap estimator showed lower bias and lower variance than the out-of-

bootstrap  estimator.   The bias  was optimistic  for  both  datasets.   The resubstitution 

estimates  used  to  correct  for  the  pessimistic  bias  of  the  out-of-bootstrap  estimator  

generally provided little or no information due to their high optimistic bias.  In these 

situations the .632 estimate is  de facto reduced to  a fixed proportion of  the out-of-

bootstrap estimate. 

4.4 Hold-out estimate

The hold-out  estimator  differs  from the  other  methods already discussed.   For  this 

method, the small dataset is divided into two disjoint parts.  One part is used to develop 

the model and the second part to test the model.  Hold-out models were built using 60% 

of the small dataset and tested using the remaining 40% of the small dataset.  These 

error estimates are referred to as the hold-out error estimator.  The reference error used 

the reserved large independent test sets to calculate the error for the models built on 

the 60% splits of the small dataset.  The open triangles plotted in Figure 4 shows the 

performance of the hold-out error estimates compared to the reference error estimates 

where the hold-out error estimates calculated using the 60:40 training and test splits of  

the small dataset are subtracted from the reference error. As an estimator of the error,  

the hold-out error estimate is unbiased.  This is apparent in Figure 4 (see open triangles 

in Figure 4) where the mean difference between the hold-out error estimates and the 
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large  sample  reference  error  estimates  of  the  hold-out  model  is  essentially  zero. 

However,  the  variance  of  the  hold-out  error  estimator  was  the  largest  among  the 

discussed error estimators.  

The solid diamond plots of Figure 4 compare error estimates using the large sample test 

set with the error calculated for both the hold-out models (built  on 60% of the small  

dataset)  and models built  on the entire  small  dataset.   These results  show that  on 

average the hold-out models are worse than models built on the entire small dataset. 

The data splitting scheme of the hold-out method generally results in inferior models 

compared models that use the entire available data.  In addition the high variance of the 

hold-out error estimator can be attributed to the small test sample size.    The high 

variance of the hold-out error estimator makes it  particularly undesirable when small 

sample sizes are employed.   

Table 1 summarizes the findings from this study.

5. Conclusion

In practice, the feasibility of a classification approach is often assessed with a limited 

number of well - characterized samples.  Usually an estimate of the generalization error 

of  the  classifier  model  is  used  to  make  this  assessment.   Both  bias  and  variance 

contribute to the uncertainty of the error estimation, yet these characteristics are not 

apparent  in  the  usual  procedure  of  estimating  the  generalization  error  of  the 

classification  model.   In  this  manuscript  the  uncertainty  introduced  by  different 

estimators of a model’s generalization error was examined in terms of bias and variance 

for small sample sizes.
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Inaccurate or biased error estimators exhibit a systematic deviation from the true error 

while imprecise error estimators exhibit  high variance.   Except for the resubstitution 

error estimates, which generally suffered from large, optimistic bias, variance dominated 

the uncertainty for all of the other estimators examined.  Partitioning the small dataset 

into an independent training and test set, the hold-out method led to unbiased error 

estimates.  However, sacrificing samples with which to build the classification models 

resulted in poor models.  Also, the limited test set yielded an imprecise estimation of the 

error leading to high variance of the error estimation.  The benefit of an unbiased error  

estimation is grossly outweighed by the high variance of the error estimation when small  

sample sizes are involved.  The commonly used crossvalidation methods, k-fold and 

LOO CV, also exhibited high variance. In addition, LOO estimates showed high bias for  

extremely small sample sizes.  Unlike for k-fold CV, the variance of LOO estimators 

cannot be reduced by further resampling.  Stratified 5-fold CV had remarkably low bias,  

and the variance could be somewhat reduced by repeating the 5-fold error estimation 

over more than one random split of the data.  Repeated k-fold CV is a simple extension 

of the common k-fold CV procedure that should be considered in order to reduce the 

variance of the estimator.  The out-of-bootstrap estimates were pessimistically biased, 

but showed the least variance among the pessimistically biased estimators.  The low 

variance properties of this estimator are particularly attractive for situations where one 

has  a  small  dataset  for  which  to  develop  and  test  a  classifier.  The  .632-corrected 

bootstrap  estimator  had  lower  variance  than  the  out-of-bootstrap  method.  The 

resubstitution error estimates are near zero, effectively reducing the weighted average 
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used as the .632 bootstrap error estimate to the fixed proportion (0.632) of the bootstrap 

error  estimate.   However,  the  resubstitution  estimate  was  extremely  optimistically 

biased in a small sample size situation, and therefore caution is advised when using it to 

correct the out-of-bootstrap error with the .632 estimate [11].  

Uncertainty in the error estimation can compromise model selection, and can lead to 

false conclusions about the integrity of the classification approach.  A small sample size 

exacerbates these problems, making the choice of error estimation method that much 

more critical.
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Table 1.  Summary of the performance of some common error rate estimation methods for small sample sizes

- 20 -

Bias Variance Repetitions Comment

Hold-Out Unbiased High N/A Deprives classifier training and testing from 

samples, compromising model quality and error 

estimation reliability 

Resubstitution Large, optimistic Low N/A Low variance, result of large optimistic bias

Leave-One-Out Pessimistic, usually 

low – but fails in 

certain situations

High N/A Bias and variance can be large for small sample 

sizes, LOO fails.  

k-Fold Low, pessimistic High Yes, but not 

commonly 

implemented

Recommend to use k-fold with repetition to further 

reduce variance.

Out-Of-

Bootstrap

Pessimistic Low Yes Uses repetitions to reduce variance.   

.632-Bootstrap Low, pessimistic or 

optimistic 

Low Yes Overtrained situations: optimistic, reduction in bias 

and variance based on no information.



Figure 1. Diagram of the Error Estimation strategy used to determine the bias and 

variance of the small sample estimators relative to the large sample error rate 

estimation.  The large sample error rate is assumed to be a good approximation to the 

true generalization error of the classification model.
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Figure 2 A) Reference error rate estimation for the simulated data based on using a 

large test set, 50,000 per class, to provide an estimate of the generalization error of the 

classification models built with varying training set sizes using a two – latent variable 

PLS-DA model.  The mean and standard deviation of the reference error rate are 

reported over the 1000 different estimations performed on different subsets of the 

Simulated Data.

B) Reference error rate estimation for the Diabetes data based on using a large test set 

(200 per class) to provide an estimate of the generalization error of the classification 

models built with varying training set sizes using a two – latent variable PLS-DA model.  

The mean and standard deviation of the reference error rate are reported over the 1000 

different estimations performed on different subsets of the Diabetes Data
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Figure 3A. Performance of Small-Sample Error Estimators: Simulated Data

Small sample error rate estimation minus the large sample (reference) error rate 

estimation as a function of training set size.  Differences in the error rates were 

calculated over 1000 subsets of the data (submodels) and the mean and standard 

deviation of the differences are reported.  The mean and standard deviation respectively 

provide a measure of the bias and variance of the small sample estimator.
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Figure 3B. Performance of Small-Sample Error Estimators: Diabetes Data

Small sample error rate estimation minus the large sample (reference) error rate 

estimation as a function of training set size.  Differences in the error rates were 

calculated over 1000 subsets of the data (submodels) and the mean and standard 

deviation of the differences are reported.  The mean and standard deviation respectively 

provide a measure of the bias and variance of the small sample estimator.
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Figure 4A. Performance of Small-Sample Hold-Out Error Estimator: Simulated Data

Hold-out error rate estimation based on 60:40 training and test set splits of the small 

sample.  Open triangles plot the hold-out error minus the large sample (reference) error 

rate estimation as a function of training set size.  Differences in the error rates were 

calculated over 1000 subsets of the data (submodels) and the mean and standard 

deviation of the differences are reported.  The mean and standard deviation respectively 

provide a measure of the bias and variance of the small sample estimator.  The solid 

diamond plots compare the difference in error estimates using the large sample test set 

with the error calculated for both the hold-out models (built on 60% of the small dataset) 

and models built on the entire small dataset.  These results show that on average the 

hold-out models are worse than models built on the entire small dataset.
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Figure 4B. Performance of Small-Sample Hold-Out Error Estimator: Diabetes Data

Hold-out error rate estimation based on 60:40 training and test set splits of the small 

sample.  Open triangles plot the hold-out error minus the large sample (reference) error 

rate estimation as a function of training set size.  Differences in the error rates were 

calculated over 1000 subsets of the data (submodels) and the mean and standard 

deviation of the differences are reported.  The mean and standard deviation respectively 

provide a measure of the bias and variance of the small sample estimator.  The solid 

diamond plots compare the difference in error estimates using the large sample test set 

with the error calculated for both the hold-out models (built on 60% of the small dataset) 

and models built on the entire small dataset.  These results show that on average the 

hold-out models are worse than models built on the entire small dataset.
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Figure 5. Resubstitution and Reference Error Rate Estimations for the Simulated Data.  The 

mean and standard deviation of the resubsitution and reference error rates are reported over the 

1000 different estimations performed on different subsets of the Simulated Data. Note that the 

resubstitution error is essentially zero for small sample sizes.
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Figure 6. Leave-One-Out and Reference Error Rate Estimations for the Simulated Data. The 

mean and standard deviation of the LOO and reference error rates are reported over the 1000 

different estimations performed on different subsets of the Simulated Data. Note poor 

performance of the Leave-One-Out estimate (large variance as well as bias) for small sample 

sizes.
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